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Recommendations for SZ/TSPA Model Uncertainty Analysis
Concerning the Yucca Mountain Project

by
Dr. Kenneth T. Bogen

LLNL (L-396, 925-422-0902, bogen@LLNL.gov)
October 10, 2003

This report considers the problem of how best to evaluate the stability (i.e.,
sampling reliability) of Monte Carlo outputs obtained for two Yucca Mountain Project
(YMP) modeling components, namely, outputs for the Saturated Zone (SZ) model, and
for the Total System Performance Assessment (TSPA) model.  One approach considered
is the one that has been employed to date, namely, the application of Monte Carlo
methods.  Also considered in this context are potential improvements that might be
obtained by the additional use of a Monte Carlo “quitting rule”, such as that defined by
Woo (1991), to select the number of Monte Carlo sample runs to perform.  By the Monte
Carlo approach, each output-value sample (realization) is calculated as a function of a
sample-value vector of stochastic realizations, each of which in turn corresponds to a
value of a corresponding distributed input variable.  Abstractions from the SZ model
and the Biosphere model are both used as input to the TSPA model.  Sets of stochastic
realizations required for SZ and TSPA abstractions "expensive" to generate, so the
practical issue addressed by a “quitting rule” is how to determine what number of
realizations is "enough" for the purpose of characterizing sampling error in the Monte
Carlo estimate obtained for a specified model output of concern.  In the TSPA context,
the model output of concern is generally considered the time evolution of the arithmetic
mean value, an estimator of the expected value, of TSPA-generated annual dose D(t) to
the defined receptor within 10,000 y after waste-repository closure.

Recommendations below specifically address: (1) whether or not a Monte Carlo
approach (such as one employing the Woo quitting rule) is an appropriate basis for
undertaking SZ- or TSPA-related uncertainty analysis, and (2)!what other method
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might be more appropriate.  While the following discussion and recommendations
focus particularly on SZ applications, they also apply to other YMP model components
including the TSPA.  For this reason, some TSPA-specific issues are also addressed.

1. Are Monte Carlo Methods—e.g., Implemented Using the Woo (1991) Quitting
Rule—an Appropriate Basis for Assessing Reliability of Estimated SZ or TSPA
Model Output?

Monte Carlo methods are often used to characterize the output of complex
probabilistic models.  A key advantage offered by this standard approach is that it does
not require an analytic expression of output value as a function of uncertain
(distributed) input values.  This approach is thus now commonly applied (e.g., using
random or Latin Hypercube sampling methods to generate pseudo-random input-
variable realizations) to characterize uncertainty in output of any complex model that is
either impossible or too tedious to characterize using analytic methods (Helton and
Davis, 2002).  For this reason, Monte Carlo methods have also been used to date to
characterize uncertainty YMP SZ and TSPA model outputs (BSC, 2001a-b).

Typical Monte Carlo analyses involve generating and sorting from 104 to 105 or
more simulated output values for the purpose of characterizing output uncertainty.  In
the case of the SZ and (by virtue of its incorporation of the SZ model) the TSPA models,
model-output realizations have been relatively expensive to obtain due primarily to the
nonlinear structure and complexity of the SZ model, so typically far fewer than 104 and
frequently fewer than 103 realizations have been generated for each characterization of
SZ- or TSPA-model output uncertainties (BSC, 2001a).  The following subsection
(Section 1.1) explains why any characterization of SZ- or TSPA-model output
uncertainties based on so few Monte Carlo realizations cannot be considered reasonably
reliable a priori.  The validity of this conclusion is independent from and unaffected by
conditioning Monte Carlo sampling on the application of any Monte Carlo “quitting
rule” (QR), such as that defined by Woo (1991), notwithstanding claims to the contrary
asserted by Woo (1991).  The QR defined by Woo (1991) and its questionable validity
are discussed below in Section 1.2.  Finally, Section!1.3 discusses the point that even if a
mathematically valid QR (VQR) were correctly applied to one or more TSPA submodels
(e.g., the SZ model) in order to obtain random sample values of submodel output to use
as inputs for Monte Carlo TSPA evaluation, then the mathematical validity of a
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subsequent VQR application to evaluate the TSPA itself (i.e., of any nested application
of the VQR) would need to be established, and this issue has not previously been
addressed (e.g., by Woo, 1991).

1.1. The “Curse of Dimensionality”:  Why Monte Carlo sampling cannot
efficiently provide a reliable characterization of SZ/TSPA model uncertainty
The SZ and TSPA models each involve potentially complex (e.g., unspecified

nonlinear) interactions among >20 distributed input variables (this point is discussed
further in Section!2).  Because it is possible that a combination of relatively (but not
extremely) unlikely values of some (perhaps even a small) subset of these variables may
produce a very large upward shift the value of modeled concentrations and/or
exposures (and hence in the value of corresponding predicted risk), it simply is not
possible to characterize uncertainty in estimated mean SZ or TSPA output with any
reasonable degree of reliability using Monte Carlo methods unless sample size N used
is very large (e.g., N >> 104), i.e., far larger than sample sizes used for this purpose to
date.  This is true regardless of the Monte Carlo sampling technique used (e.g., Latin
Hypercube vs. uniform sampling).  The reason is simply the very large size of the
sample space that must be undertaken to achieve such reliability, given the relatively
large number n of variables (and corresponding sampling dimensions) involved.  This
problem is referred to as the “curse of dimensionality” in Bayesian statistical literature,
and it arises because the volume of sample hyperspace grows (hence its sample density
shrinks) exponentially as a function of the sampling dimension n (Bellman, 1961).

The following example illustrates why Monte Carlo methods do not efficiently
yield reliable estimates of a poorly defined function of many distributed input
variables.  Suppose each of n such suitably defined variables is known a priori only to be
related monotonically to an output of interest (e.g., expected risk), and upper p-fractiles
of subsets of m (i.e., m-tuple subsets) of these variables could (in the absence of
knowledge that this could not occur) potentially interact to greatly (e.g., super-
multiplicatively) increase the value of corresponding risk conditional on those upper-
bound input values, and hence similarly increase the true value of expected risk.  It
would follow in this case that any reasonably reliable assessment of uncertainty in
estimated risk must be based on s risk realizations that jointly reflect ≥1 sample of each
m-tuple combination of upper p-fractiles.  The chance that such specific combination
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occurs is pm, which clearly becomes very small quickly as m increases, e.g., for values of
p ≤20%.  But for m equal to just 2 or 3, the small likelihood pm might possibly be
balanced by a large upward shift in corresponding predicted risk, which may in turn
correspond to a non-negligible or even sizeable increase in expected risk.  The key point
is that, absent a priori knowledge about the true distribution of risk, there is simply no
way of knowing that such a disproportionately increased risk level could be produced
by a particular combination of m upper-p fractile values for m corresponding inputs,
without actually sampling each potentially relevant combination at least once.

Even if implemented using Latin Hypercube stratified sampling (LSH), Monte
Carlo methods neither solve nor get around the dimensionality problem.  In particular,
Monte Carlo estimation done by LHS is unable to address this problem efficiently, and
uniform random Monte Carlo sampling does even worse.  For example, with n = 20,
there are a total of 220 ª 106 possible unique combinations of upper-vs.-lower bound
values for all 20 variables.  Sampling each of these combinations (by LSH or any other
strategy) is clearly unfeasible in the YMP context.  Of all possible combinations, only

nm!= 

† 

20
m( )  potentially relevant m-tuple combinations of upper-bound values need be

sampled in order to include each such upper-bound combination (UBC) at least once
(e.g., nm = 190, 1,140 and 4,845 for m = 2, 3 and 4, respectively).  However using LHS
(which guarantees that each sample will contain at least one among n possible upper-
bound values), each sample (among N total samples) will contain a given number ni,m =

† 

i+1
m( )  of m-tuple UBCs with a corresponding binomial probability pi, = 

† 

n-1
i( )pi(1- p)n-1- i , for

i = 1,..., 19.  For example, given n!= 20 and p = 10%, the probability p0(m) that no m-tuple
UBCs will be contained in particular sample is 13.5%, 42.0% and 70.5% with m = 2, 3
and 4, respectively.  Finding the sample size N sufficient to ensure a low probability pcc

(e.g., pcc <5%) that one or more potentially relevant UBCs remain unsampled is a doubly
stochastic generalization of the classic “coupon collector” problem of determining an

occupancy waiting time, namely: “What is the number N of store-visits (i.e., samples,

assuming m = 1 coupon per sample) to ensure that among a total of nm different
coupons, ≥1 remain uncollected with a probability that is  less than pcc.”  The well known
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Poisson approximation is that N = N provided that pcc > [nm(1–

† 

nm
-1)N ª nm e-N/nm] and also

that pcc is small, i.e., that

N > (nm/m)[Loge(nm/pcc)] (1)

conditional on m = 1 (Feller, 1970).  In our Monte Carlo problem involving n = 20
variables with p = 10%, unique UBCs are the coupons of interest, but the number ni,m of
possible m-tuple UBCs obtained per sample among all (nm) possible unique UBCs varies
randomly from sample to sample.  The series expression (Johnson and Kotz, 1977) for

the probability Prob(N ≤ N) conditional on any number m of “coupons” (1 ≤ m ≤ n) was

reported originally by Pólya in 1930.  Evaluations of that expression indicate that
Inequality (1) above provides a fairly accurate bound on N in the general m-coupon case
in all cases investigated (with 2 ≤ m ≤ 10, 20 ≤ nm ≤ 500, pcc = 5%).  In our doubly
stochastic problem conditional on m and pcc, variations in ni,m will occur randomly over
the N required samples, so N ª È

† 

N /(1–p0(m))˘, where Èv˘ = the greatest integer ≥v and

† 

N  = 

† 

pi 1- p0(m)( )[ ] nm m( )loge (nm pcc)[ ]{ }i= m-1

n-1
Â .  These expressions yield corresponding

minimum required values of sample size N equal to 880, 11,559 and 126,634 with m = 2,
3 and 4, respectively.  Thus if a number N < 880 of LHS samples were used in this
example, there would be a significant probability that the joint upper-100p%-tail values
of at least one of the 190 possible pairs of 20 variables would not be sampled at all, and
consequently the Monte-Carlo estimate of output would not reflect the possibility that
one or more unsampled upper-tail combinations might profoundly affect the true
output of interest.  Likewise, >104 realizations are required to reasonably ensure that all
3-variable joint UBCs are sampled and thus reflected in estimated output for this
example—a sample size far greater than any previously used to characterize YMP-
related uncertainties.

1.2. The validity of the Woo (1991) QR is questionable

The QR defined by Woo (1991) is based on the following definition of a “minimum
necessary” number WN of Monte Carlo model runs, as a function of the current number
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N of such runs already completed, each of which runs yields a sample value Ri of the
model output R, for i = 1,…,N:

  WN  =  (2e)-1  +  [(e-1/2)

† 

gN ]/C     for all      

† 

gN ≥ p2N – JN( ) JN (2)

where:
   

† 

gN   =  the sample coefficient of variation (i.e., the square root of the sample
variance divided by   

† 

R , the sample arithmetic mean) of Ri for i = 1,…,N,

    JN   =   the least number of the sampled risks Ri that sum to a value >pN  

† 

R  with
p “close to 1” (e.g., p!> 0.95 or p > 0.90),

      c   =  (RN+1–  

† 

R )/  

† 

R  ,

      C  =  the maximum acceptable value of c, and

      e   =  Prob(C ≤ c) . (3)

An important aspect of this QR is the definition of JN.  According to Woo (1991, at
p.!182), but inserting JN in place of Woo’s notation J(N) and bold font to key phrases:

“In a sequence of Monte Carlo runs, many of the sampled risk values
may be found to be zero of extremely small.  In these circumstances, it is
useful to define the number of significant risks JN included within a
sample of N values.  A natural definition of JN is the least number of risks
comprising more than 95% of the sum of the risks obtained during a
sequence of N Monte Carlo runs.”

Note this definition refers not to “any potential sequence of N Monte Carlo runs" but
rather simply to "a sequence of N Monte Carlo runs."  In this context Ri thus represents a
particular set of N realizations actually produced by N corresponding Monte Carlo
simulations—the same realizations to which the Woo QR is claimed to be applicable.  It
is also worth noting that JN defines a lower acceptable bound on 

† 

gN  = 

† 

sN /  

† 

R , where (see

Woo 1991 at p. 180)   

† 

R  = the sample (not population) mean of R, and 

† 

sN  =  the square
root of the corresponding sample (not population) variance.  Thus, contrary to Woo's
assertion (at p. 181, using the notation V(N) = 

† 

gN ) that 

† 

gN  is "the coefficient of variation"
of R, it is actually the sample coefficient of variation of Ri!.

If Woo had defined JN and 

† 

gN , or just JN, purely as functions of the true parent
distribution of R, rather than in terms of the sample realizations Ri!, then Woo’s QR
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would be a circular tautology with no practical application as a stopping rule applicable
to any given set of N sampled R-realizations, since in this case any particular estimate of
JN (and hence the lower acceptable bound for 

† 

gN  required by the Woo QR) would be
uncertain.  If, on the other hand, JN were defined in terms of a true R-distribution well
enough characterized to define JN with absolute certainty, then a sufficiently accurate
estimate of the expected value of R, i.e., of E(R) = E(  

† 

R ) to within ±100(1–p)% with p =

1–e, would by virtue of this definition of JN be provided directly by   

† 

R  conditional on N
= JN, without recourse to any QR.

The Woo (1991) QR thus asserts that using Eq. (2) to define WN guarantees that
Eq.!(3) is true, with JN and 

† 

gN  defined as functions of the samples Ri and not of the
parent distribution of R.  Operationally, the Woo (1991) QR recommends terminating
Monte Carlo sampling of R as soon as (or reasonably soon after) N > WN.  Notably, Woo
(1991) characterized this rule as a “general non-parametric rule for quitting Monte Carlo
simulation,” without reference to any a priori constraints (e.g., on the parent distribution
from which R is sampled) that are required in order to guarantee the truth of the rule.

The QR summarized above appears to offer an absolute and nonparametric bound
on error of a sample mean, without specific conditions on the parent distribution from
which samples are drawn.  If valid, such a QR would comprise a fundamental statistical
breakthrough, as important as Tchebychev’s inequality, and would have direct
applicability to complex estimation problems like those involved in YMP-related
uncertainty analyses.  However, the Woo (1991) paper was published not in a
mathematical or statistical journal, where its underlying mathematical merits would
likely have received rigorous peer review, but rather in a nuclear engineering journal.
According to the Science Citation Index as of April 2003, the Woo (1991) paper had been
cited only once, in a review paper by Helton (1993) that merely cited but did not
specifically discuss the Woo (1991) paper.

The basis of the Woo (1991) QR is the following inequality, reported by Woo (1991),
that is implied by a very similar (but stronger) inequality reported by Saw et al. (1984):

Prob{|RN+1–  

† 

R | > l Q(N)}  <  N-1 + l-2   ,  (4)
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This inequality, and the stronger version originally reported by Saw et al. (1984),
represents a Tchebychev-type of inequality that is conditional on a sample mean   

† 

R  and
a “pseudo-population variance” Q(N) of N realizations of a specified random variable,
where Q(N) = the product of (N+1)/N and the corresponding N-sample variance, and

where l was assumed by Saw to be an arbitrary constant ≥    

† 

N /(N - 1) .  However, to
derive the QR stated above, Woo (1991) assumed that l = (N+1)d/Q(N) for arbitrary d.
The latter assumption replaced Saw’s constant l by a function of the random variable
Q(N), thus rendering that function a random variable.  The mathematical validity of
Eq.!(4) conditional on this replacement is not evident and was not proven by Woo
(1991).  Replacement of random estimators by corresponding sample statistics is often
performed in statistics for the purpose of deriving new estimators.  However, this type
of substitution generally has probabilistic consequences that must be defined before the
statistical utility of any such new estimator can be evaluated.  The Woo (1991) QR
moreover does not define a new estimator, but rather a rule asserting an absolute bound
on error associated with sequential Monte Carlo estimates—a purpose to which the
applicability of the underlying inequality was not claimed by Saw et al. (1984), has not
since been demonstrated, and therefore remains questionable.

Besides its questionable mathematical basis, there is a fundamental practical
problem associated with applying the Woo QR in the context of YMP-related
uncertainty analysis.  This problem is simply that the required minimum sample
number JN can never be defined sufficiently reliably to ensure that future samples (e.g.,
any that might reflect as yet unsampled joint upper-tail input values that profoundly
affect output, as discussed in Section 1.1) would not have the effect of contradicting the
assumed JN definition conditional on any current sample size N.

1.3. A valid QR (VQR) may not be applicable to the TSPA
If some valid QR (VQR) along the lines of the Woo (1991) QR were correctly

formulated and correctly applied to one or more TSPA submodels (e.g., the SZ model)
in order to obtain random sample values of submodel output to use as inputs for Monte
Carlo TSPA evaluation, a subsequent VQR application to evaluate the TSPA itself (i.e., a
nested application of the VQR ) may or may not be valid.  Certainly the validity of
nested VQR applications would have to be established.  This issue was not addressed



9

by Woo (1991).  By definition, a VQR would characterize uncertainty in   

† 

R , the
estimated mean (i.e., estimated expected) value of model output, as a function of N.  If
input variables to the model considered are themselves distributed and are (all, or for
some variables) each sampled from a set of values the size of which set was determined
by a previous VQR application, then the final VQR application may lack validity,
particularly if the final model is a non-linear function of the distributed input variables.
Only for a “general linear function” of random variables is the expected output value of
that function equal to that same function applied to the expected values of the input
variables.  Thus, there is no general reason to assume that limiting uncertainty in the
mean values of inputs will yield similar, or even predictable, limits on the uncertainty
of the model output.  Insofar as the TSPA model is non-linear with respect to some of its
distributed inputs to which a valid VQR is applied, application of the same VQR to the
TSPA model would not necessarily be valid, and the validity of applying any VQR to
the TSPA in this situation would have to be established.

2.  Strategic Discrete Probability Calculus (SDPC):  An Appropriate, Feasible Way to
Assess Reliability of Monte Carlo Estimates of SZ (or TSPA) Model Output

A practical problem that arises when trying to assess reliability of Monte Carlo
estimates of SZ (or TSPA) model output concerns the scope or level of detail of the
reliability assessment to be performed.  Until now, evidently, this problem has been
interpreted as being one of determining the appropriate Monte Carlo sample size, n, to
use for the input-variable vector when conducting LHS to obtain model outputs.  This
size n is just the number of input-variable vector realizations that are used to obtain n
corresponding model-output realizations.  If the goal is to estimate the expected value
of model output, then this problem is of little practical consequence so long as:
(1)!output-function evaluations are not expensive to obtain; (2) excessively heavy tails
do not pertain to each input variable that alone, or interacting with one or more other
input variables, has a substantial impact on the expected value of model output; and
(3)!the output model does not incorporate highly nonlinear interactions pertaining to
the output effect of the input-variable values.  In the context of YMP modeling, at least
criterion number (1) above is violated for at least the SZ and TSPA models.
Consequently, in this context, some fundamental limitations of (even LHS) Monte Carlo
estimation must be considered.
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Unless it can be ruled out a priori that input-variable values can interact strongly to
affect output, then reasonable possibilities for such interaction must be assessed
quantitatively if the reliability of estimated mean output is to be assessed with any
confidence.  This is difficult to do if LHS is relied on using a value of n that is “small”
relative to the number of potentially important interactive domains of the “parameter
space” of the model being investigated.  To see why, consider the possibility that values
in the highest 100p% tail of one or more of v input variables may have a very large
positive effect on mean model output, where each input variable is defined so as to
have a nonnegative correlation with model output.  Using LHS with a specified sample
size n, the likelihood of obtaining a total of zero k-tuple upper-tail combinations is given
by po(n,p,k) = (1 – pk–1)np, where k ≤ v and where np is here assumed to be a positive
integer.  Thus, for a model with only two variables suspected to be capable of
substantial interaction (k = 2), a sample size of n > 284 would be required to have at
least 95% confidence that the n output realizations generated happen to contain even a
single realization produced using an upper-tail value for each of the two variables of
concern.  For a model with three variables that might interact to substantially affect
mean output (k!= 3), a sample size of n > 2,980 would be required to have at least 95%
confidence (or n > 689 would be required to have at least 50% confidence) that the n
output realizations contain ≥1 realization involving an upper-tail value for each of the
three variables of concern.  Thus, if interactions that substantially affect mean output
cannot be ruled out a priori, fairly large sample sizes may be required even to search the
relevant sample space so that potentially important areas of it are sampled once, let
alone sampled reliably or systematically.

2.1. Strategic Discrete Probability Calculus (SDPC)
One alternative to uniform or Latin Hypercube Monte Carlo sampling is to perform

Monte Carlo using an “importance sampling” strategy, which places greater-than-
random emphasis on ranges of input-variable values, and/or on combinations of such
value ranges, that are more likely to affect output.  If samples are relatively expensive to
generate (as in the YMP context), then inefficiency of the type discussed in Section 1.1
that is induced by Monte Carlo sampling can be avoided by dispensing with Monte
Carlo sampling altogether as a means of output estimation and uncertainty analysis,
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and by instead using Discrete Probability Calculus (DPC) (see Kaplan, 1981).  DPC
calculations are entirely analytic ones that involve combinations of fixed input-variable
values and fixed corresponding probabilities.

The probability distribution function (pdf) of a stochastic input variable may be
discrete (e.g., involving v different values) or continuous.  Any continuous or v-point
discrete pdf may itself be approximated by a corresponding m-point discrete probability
mass function (pmf), i.e., by an m-point approximating pmf (apmf), which apmf
approaches an arbitrary degree of precision as mÆ• (for a continuous parent pdf) or as
mÆv with m ≤ v (for a discrete parent pmf).  Of course, if the goal is to estimate the
expected output value, general linear systems theory ensures that use of 1-point apmfs
for each stochastic input variable (in this case, the expected value of each input) will
yield the correct (exact) expected value of output, provided that output is modeled as a
linear function of all the inputs.  For nonlinear models, values of m > 1 must be used to
obtain better-than-first-order estimates, the accuracy of which will increase by
increasing the size of m.  However, to the extent that the expected output value is
affected primarily or substantially by relatively rare input-values or input-value
combinations that yield relatively large output values, reasonably accurate estimates of
expected output may still be obtained using values of m as little as 2, provided that
apmfs used are defined strategically so that potentially important combinations of
upper-bound input values (in view of their respective likelihoods of occurrence) are
represented in the DPC expression used to estimate the mean (and complete
distribution) of model output.

An illustration of how 2-point apmfs may be used in the context of environmental
health risk assessment was reported by Bogen (1995).  This illustration showed how a 2-
point apmf approach is most conveniently applied by summarizing each stochastic
input variable by its expected value m and by the expected value w of the left-truncated
pdf comprising the upper 100p% tail of the parent pdf.  By this approach, a skewed
dichotomous pdf is created for each stochastic input variable.  For example, assuming
that p = 0.10, w = 0.95 for a uniformly distributed U(0,1) variable; see Bogen (1995) for a
convenient expression to obtain w for lognormally distributed variables.  The apmfs
involved using the approach of Bogen (1995) are defined to be “mean-preserving.”
Thus, if the output model is a linear function of model inputs, then the Bogen (1995) 2-
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point approach ensures that the corresponding DPC-estimate of model output will
always be exact.

If a 2-point apmf approach is used to perform DPC for a model that involves v
stochastic variables, then a total of n = 2v model-function evaluation steps are required
to obtain the corresponding apmf of the model output, from which a corresponding
(apmf-approximated) expected value may readily be calculated (as the ordinate-
weighted sum of apmf abscissa values).  For nonlinear models, the latter estimate of
expected model output will not be exact, but confidence in the estimate arises from the
fact that it (by definition) accounts for all possible combinations of upper-bound input
values.  This accounting for all possible combinations of upper-bound input values does
not necessarily occur if LHS is used to obtain a Monte Carlo estimate of expected
output, as noted above.  As shown above, for a model involving three stochastic
variables, a total of n > 689 model-function evaluations are needed to assure with >50%
confidence that all possible combinations of upper-bound input values are each
sampled at least once.  Using DPC, that assurance is provided with 100% confidence
using a total of only n = 8 model-function evaluations.

If model-function evaluation steps are expensive and v is relatively large, then even
a 2-point DPC approach to estimating model output and its uncertainty may not be
feasible.  In this case, there is no “perfect solution” to the problem of characterizing
uncertainty in an estimate of expected model output.  The relative merits of alternative
approaches must be evaluated in terms of the extent to which they provide reasonable
assurance that all potentially important areas of parameter-vector space are reflected in
a corresponding estimated value of expected output.  Considerations addressed above
indicate that, in this regard, LHS may not provide as much reasonable assurance as a
strategic implementation of 2-point-apmf-based DPC, hereafter referred to as “strategic
DPC” (SDPC).

The SDPC approach recommended here is one in which a strategically truncated
version of 2-point-apmf-based DPC is used to estimate expected model output.
Truncation is accomplished either (1) by reducing the number v of stochastic variables
included in the model (as described below), or (2) by including in the DPC analysis only
combinations involving k or fewer of the v stochastic variables included in the model.
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By the first approach, SDPC implementation is facilitated by reducing v to include only
those stochastic inputs having distributional forms that are each known (or, from
previous sensitivity studies, reasonably suspected) to have a substantial effect on mean
output.  Distributions pertaining to remaining variables should each be replaced by
their corresponding expected values (i.e., v < the original total number of stochastic
parameters).

By the second approach, DPC analysis addresses all v input variables, but includes
only combinations involving k or fewer of the v stochastic variables included in the
model.  For reasonably small values of p defined above (e.g., p = 0.10), the likelihood pk

of each k-tuple upper-bound combination clearly becomes small quite rapidly as k
increases.  This in turn means that, even for moderately large k, if the contribution of
one or more particular k-tuple upper-bound combinations to the expected output value
happen to be quite large (relative to a conditional expected value calculated without
these combinations), such contributions may nevertheless have minimal impact on
actual expected model output due to their very small likelihoods of occurrence.  Values
for p and k selected thus reflect a tradeoff between potentially important effects on
estimated mean output that depend on the rarity (p) of the range of upper-bound values
that most affect mean output for each variable, and the likely magnitude of k-tuple
upper-bound interactive effects on mean output.  Of course, if setting k<v is used as the
method of DPC-problem truncation, then the likelihoods pj of each jth combination of
(non-upper-bound and/or upper-bound) input values considered will sum to a value
P!< 1, and the corresponding output apmf must therefore be normalized by dividing all
pj values by P.

The SDPC approach outlined above has the important advantage that all possible k-
tuple combinations of upper-bound variable values will in fact be incorporated into each
SDPC-based estimate of expected model output.  In contrast, a LHS approach offers no
such assurance for problems involving relatively large v when n cannot be very large
because model-output function evaluations are expensive.  Variations in SDPC
quantities (namely, p, k and v defined above) may be used to explore the sensitivity of
SDPC-based estimates, relative to the estimate obtained using baseline quantities such
as p = 0.10, k = 2, and v = the original total number of stochastic parameters.  To
examine the impact of model nonlinearity, it is also easy to compare estimates of mean
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output using 2-point SDPC analysis to corresponding first-order estimates obtained
using the 1-point approach (i.e., using expected values for each stochastic input
variable, e.g., as indicated for SZ outputs in Figure 11 on p. 43 of BSC, 2001a).

2.2. Application of SDPC to assess reliability if estimated mean SZ/TSPA output
The SZ model has v = 29 stochastic input variables (BSC, 2001b), which the SZ

model uses to calculate output radionuclide concentrations at a 20-Km site fenceline
from corresponding unit-valued radionuclide concentrations assumed to be input from
the unsaturated zone (UZ) (TRW, 2000).  Even using 2-point apmfs for each input
variable, a standard DPC analysis would thus require n = 229 =  ~5.4 ¥ 108 model-
function evaluations, which is too large to be practical in the case of SZ (or TSPA)
model-output analysis.  Using truncation method 1 referred to in section 2.1 above, the
scope of the problem might reasonably be reduced strategically to require n’ < n output
evaluations by focusing only on a subset of v’ < v input variables known to have the
greatest impact on expected model output, based on preliminary sensitivity analyses
(such as a rank-regression analysis performed on output from a previous LHS Monte
Carlo analysis).  For example, six SZ parameters (see Table 15 on pp. 65-68 of BSC,
2001b) that each appear to have a particularly large univariate impact on expected SZ
output, relative to that of the other input parameters, are:  Groundwater specific
discharge (GWSPD), Flowing interval porosity (FISVO), Diffusion coefficient (DCVO),
Sorption Kd coefficient for Np (KDNPAL), Horizontal anisotropy (HAVO), and Colloid
retardation factor in the alluvium (CORAL) (Stephanie Kuzio, YMP, Sandia; personal
communication, 26 March 2003).  Additional parameters might also be considered as
feasible.  SDPC results might thus be compared based on v’ = 6, 7 and 8, corresponding
to a total of n’ = 64, 128 and 256 output evaluations, respectively.

Alternatively, using truncation method 2 referred to in section 2.1 above, the scope
of the SZ problem might reasonably be reduced strategically to address only k-tuple
combinations of input parameters that each are dichotomized using 2-point apmfs,

where k < 29.  If k = 2, then a total of n = 
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29
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜  = 406 output-function evaluations would

be required (which might be feasible); for k = 3, a total of n = 3,645 evaluations would be
needed (which would not likely be feasible).  A combination of both methods might
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also be employed, e.g., to obtain SDPC estimates of expected output for all k-tuple
combinations of v’ 2-point approximations of the most important parameters, where
1!≤!k ≤ 3.  By this “mixed-truncation” method, using v’ = 8, 10 or 12 corresponds to a
requirement for a total of n’ = 92, 175 or 298 output evaluations, respectively, whereas if
1!≤!k ≤ 2, then using v’ = 20, 25, or 29 corresponds to a requirement for a total of n’ = 210,
325 or 435 output evaluations, respectively.  The “mixed-truncation” method thus has
the advantage of providing a nonstochastic estimation of expected model output that
accounts for all possible upper-bound combinations involving up to a total of Max(k)
among v’ stochastic input variables.  A demonstration that estimates obtained using
increasing values of Max(k) are similar in magnitude would support the conclusion that
these estimates are reliable.  Importantly, such an assessment of reliability would
involve the most reasonably comprehensive systematic exploration of the impact of
potentially important parameter interactions on estimated model output that is
possible, conditional on the greatest feasible number of output function evaluations.  A
similar claim cannot be made if a LHS Monte Carlo approach is used to estimate
expected model output.

Expected SZ-model outputs have been presented in terms of relative-mass-flux
breakthrough curves for radionuclide or radionuclide class as functions of time (see
Figure 11 on p. 43 of BSC, 2001a).  Reliability assessment of expected SZ-model output
(by whatever method) should also include analyses performed using an SZ-output
metric that corresponds directly to TSPA output—that is, to radionuclide-specific
contributions to the expected value, ED (where E is the expectation operator), of
maximum 1-year committed dose D to a hypothetical resident at the 20-Km site
fenceline, conditional on the corresponding concentration input Ii(t) for that ith
radionuclide from the Unsaturated Zone (UZ) as a function of time t assuming that
Ii(t)!= 1 for all t.  The latter allows the reliability assessment to be interpreted more easily
in terms of consequences for TSPA modeling than an assessment that focuses on the
reliability of particular estimated SZ-specific outputs, some of which will have little
impact on the final TSPA output of ultimate concern.  As noted above, the SZ model
generates radionuclide-specific concentrations Ci(t) at time t conditional on
corresponding unit input UZ concentrations.  Each Ci(t) value is linearly related to a
corresponding committed-dose contribution Di(t) (conditional on unit-concentration UZ
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inputs) by the equation:  Di(t) =  Fi Ci(t), where Fi is the Biosphere Dose Conversion
Factor (BDCF) for the corresponding ith radionuclide.  Uncertainty distributions (and
very reliable estimates of the expected values EFi) for the factors Fi can be generated
readily from the Biosphere model, and are currently available.  Translation of SZ
outputs into corresponding TSPA-related outputs is facilitated by the fact that EDi(t) =

EFi ECi(t), such that ED = Max(

† 

EFii

g
Â EDi(t)EIi(t)), where g is the number of

radionuclides and Max is taken with respect to all times t, and where calculation of ED
would require estimates of Ii(t) from the UZ model (and so might be beyond the scope
of SZ-output reliability assessment, but would be required to assess reliability of
estimated mean TSPA output).  Note that the relations defining EDi(t) and ED are not
affected by the covariance structure of Ci(t) for all i.  To reduce calculations for the
purpose of assessing reliability of SZ-generated EDi(t) estimates, times t might be
evaluated only at 50- or 100-year increments.
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